Mario Gerla, University of California, Los Angeles

Internet of Vehicles: From Intelligent Grid to Autonomous Cars

AbstractóTraditionally, the vehicle has been the extension of the manís ambulatory system, docile to the driverís commands. Recent advances in communications, controls and embedded systems have changed this model, paving the way to the Intelligent Vehicle Grid. The car is now a formidable sensor platform, absorbing information from the environment, from other cars (and from the driver) and feeding it to other cars and infrastructure to assist in safe navigation, pollution control and traffic management. The next step in this evolution is just around the corner: the Internet of Autonomous Vehicles. Pioneered by the Google car, the Internet of Vehicles will be a distributed transport fabric capable to make its own decisions about driving customers to their destinations. Like other important instantiations of the Internet of Things (e.g., the smart building), the Internet of Vehicles will not merely upload data to the Internet. It will have its own communications, storage, intelligence, and learning capabilities to anticipate the customersí intentions. The concept that will help transition to the Internet of Vehicles is the Vehicular Cloud, the equivalent of Internet cloud for vehicles, providing the basic services required by the autonomous vehicles. This talk will trace the evolution from Intelligent Vehicle Grid to Autonomous, Internet-connected Vehicles, and Vehicular Cloud.


Dr. Mario Gerla is John Postel Chair Professor in the Computer Science Dept at UCLA. He holds an Engineering degree from Politecnico di Milano, Italy and the Ph.D. degree from UCLA. At UCLA, he was part of the team that developed the early ARPANET protocols under the guidance of Prof. Leonard Kleinrock. He joined the UCLA Faculty in 1976. At UCLA he has designed network protocols including ad hoc wireless clustering, multicast (ODMRP and CODECast) and Internet transport (TCP Westwood). He has lead the ONR MINUTEMAN project, designing the next generation scalable airborne Internet for tactical and homeland defense scenarios. His team is developing a Campus Vehicular Testbed. Parallel research activities are wireless medical monitoring using smart phones and cognitive radios in urban environments. He is active in the organization of conferences and workshops, including MedHocNet and WONS. He serves on the IEEE TON Scientific Advisory Board. He became IEEE Fellow in 2002, was recently recognized with the MILCOM Technical Contribution Award in 2011, the IEEE Ad Hoc and Sensor Network Society Achievement Award in 2011 and the ACM Sigmobile Outstanding Contribution Award in 2015.